Leverage and diversification Lecture 2

Dr. Martin Ewers

April 23, 2014

Table of contents

- 1. Notation
- 2. Portfolio characteristics
- 3. Leverage & short selling
- 3.1 Definitions
- 3.2 Mathematics
- 3.3 Numeric example
- 3.4 Lessons
- 4. Diversification
- 4.1 Definitions
- 4.2 Mathematics
- 4.3 Numeric example
- 4.4 Lessons

・ロト 《母 》 《玉 》 《玉 》 《日 》

3/41

<i>r</i> ₀	riskless return
R _i	return (a random variable) of asset <i>i</i> with $i = \{0,, n\}, R_0 = r_0$
$E[R_i] = \mu_i$	expected value of return of asset i
$COV(R_i,R_j)=\sigma_{i,j}$	covariance of R_i and R_j
$\operatorname{VAR}(R_i) = \sigma_i^2 = \sigma_{i,i}$	variance of R_i

Section 2

Portfolio characteristics

<ロト < 部 > < 注 > < 注 > 注) < ぐ 4/41

Variance of return of single asset i

$$\mathsf{VAR}(R_i) := \mathsf{E}\left[(R_i - \mu_i)^2\right]$$

Covariance of return of two assets i and j

$$COV(R_i, R_j) := E[(R_i - \mu_i) \cdot (R_j - \mu_j)]$$

$$\Rightarrow COV(R_i, R_i) = VAR(R_i)$$

4 ロ ト 4 回 ト 4 三 ト 4 三 ト 2 9 0 0 5/41

<ロト < 回 ト < 回 ト < 三 ト < 三 ト 三 三</p>

Diversification

6/41

Portfolio characteristics

Random return of a portfolio

$$R_P = \sum_{i=0}^n x_i \cdot R_i$$

 x_i is the share of the market value of asset *i* in the market value of the entire portfolio *P*:

$$\sum_{i=0}^{n} x_i = 1$$

Expected value of portfolio return

$$\mu_P = \sum_{i=0}^n x_i \cdot \mu_i = (x_0, x_1, \dots, x_n) \cdot \begin{pmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{pmatrix} = \vec{x}^T \cdot \vec{\mu}$$

<ロ > < 部 > < 注 > < 注 > 注 の < © 7/41

Variance of portfolio return

V

$$AR(R_P) = E\left[(R_P - \mu_P)^2\right]$$
$$= E\left[\left(\sum_{i=0}^n x_i \cdot R_i - \sum_{i=0}^n x_i \cdot \mu_i\right)^2\right]$$
$$= \sum_{i=0}^n \sum_{j=0}^n x_i \cdot x_j \cdot COV(R_i, R_j)$$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q () 8/41

Variance of portfolio return

$$VAR(R_P) = \sum_{i=0}^{n} \sum_{j=0}^{n} x_i \cdot x_j \cdot COV(R_i, R_j)$$
$$= (x_0, x_1, \dots, x_n) \cdot \begin{pmatrix} \sigma_{0,0} & \sigma_{0,1} & \dots & \sigma_{0,n} \\ \sigma_{1,0} & \sigma_{1,1} & \dots & \sigma_{1,n} \\ \vdots & \vdots & \vdots \\ \sigma_{n,0} & \sigma_{n,1} & \dots & \sigma_{n,n} \end{pmatrix} \cdot \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{pmatrix}$$
$$= \vec{x}^T \cdot C \cdot \vec{x}$$

<ロト < 部 > < 注 > < 注 > 注 = う < ぐ 9/41

 \Leftrightarrow

Variance of portfolio return - portfolio with just two assets

$$\mathsf{VAR}(R_P) = \sigma_P^2 = (x_1, x_2) \cdot \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$\sigma_P^2 = x_1^2 \sigma_1^2 + 2 \cdot x_1 \cdot x_2 \cdot \sigma_{12} + x_2^2 \sigma_2^2$$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q () 10 / 41

Definition (correlation coefficient of returns)

$$\rho_{i,j} = \frac{\mathsf{COV}(R_i, R_j)}{\sigma_i \cdot \sigma_j}$$

<ロ > < 部 > < 注 > < 注 > こ = の < で 11/41

The correlation coefficient $ ho_{i,j}$ falls between $[-1;1]$			
$\rho_{i,j} = 0$	no correlation		
$ ho_{i,j}=1$	perfect positive correlation		
$ ho_{i,j} = -1$	perfect negative correlation		

Section 3

Leverage & short selling

Leverage & short selling Definitions

Definition (Leverage)

Leverage is an investment strategy.

- ► Aim of leverage: Increase of the expected value of returns.
- ► How to achieve leverage: Borrow money at the riskless rate and invest the borrowed amount in risky assets.

Leverage & short selling Definitions

Definition (Short selling)

Selling assets that are not currently owned.

The usual intention is to purchase ('cover') the assets later at a lower price.

Leverage & short selling Mathematics

Return of leveraged portfolio

$$\mu_P = x_0 \cdot r_0 + (1 - x_0) \cdot \mu_1$$

<ロ > < 部 > < き > < き > き き き き う く C 16 / 41

Leverage & short selling Mathematics

Risk of leveraged portfolio

$$\sigma_P^2 = (x_0, 1 - x_0) \cdot \begin{pmatrix} 0 & 0 \\ 0 & \sigma_1^2 \end{pmatrix} \cdot \begin{pmatrix} x_0 \\ 1 - x_0 \end{pmatrix}$$
$$\Leftrightarrow \quad \sigma_P = (1 - x_0) \cdot \sigma_1$$

<ロ > < 部 > < 注 > < 注 > 注) < で く (***) 17/41

Leverage & short selling Mathematics

Achievable μ_P - σ_P -combinations

$$\mu_P = r_0 + \frac{\mu_1 - r_0}{\sigma_1} \cdot \sigma_P$$

<ロト < 部ト < 言ト < 言ト 三 の Q (C) 18 / 41

Leverage & short selling Numeric example

Numeric example

Probability	0,25	0,25	0,25	0,25
State of the				
environment	1	2	3	4
Asset 1	10,00%	20,00%	40,00%	80,00%
Asset 2	15,00%	15,00%	15,00%	15,00%

<ロ > < 部 > < 言 > < 言 > 三 の Q C 19 / 41

Leverage & short selling Numeric example

<ロト < 部 > < 注 > < 注 > 注) < ご > 20 / 41

Leverage & short selling Numeric example

Leverage & short selling

To remember

- 1. There is no 'optimal portfolio'.
- 2. There is a trade-off between risk and return: You can only trade risk for return and vice versa.
- 3. Is 20% expected return really better than 10% expected return? That depends on the risk!

Section 4

Diversification

<ロ > < 部 > < 言 > < 言 > こ = う Q (~ 23 / 41

Definitions

Definition (Diversification)

Diversification is an investment strategy.

- ► Aim of diversification: Reduction of risk. The variance of the return on a portfolio of risky assets shall be lower than the sum of the variance of the returns on individual assets.
- ► How to achieve diversification: Combining risky assets. Correlation of the returns on these assets is less than +1.

Definitions

Definition (Hedging)

Combination of risky assets. Correlation of the returns on these assets is less than 0 ($\rho_{i,j} < 0$).

Definition (Perfect hedge)

Creation of a zero risk portfolio from risky assets. Correlation of returns is -1 ($\rho_{i,j} = -1$).

26/41

Diversification Mathematics – two risky assets

- ► Assume you got two risky assets earning an expected return of µ₁ = E(R₁) respectively µ₁ = E(R₁).
- ► Put a share of x₁ in the riskless asset and a share of x₂ = 1 x₁ in the risky asset.
- ► Allow short selling of the risky asset (x₁ < 0 and x₂ < 0 is possible).</p>

¢

Diversification

Mathematics - two risky assets

Extreme scenario: Perfect positive correlation of risks

$$\rho_{i,j} = \frac{\text{COV}(R_i, R_j)}{\sigma_i \cdot \sigma_j} = 1$$

$$\Rightarrow \quad \text{COV}(R_i, R_j) = \sigma_i \cdot \sigma_j$$

<ロ> < 部 > < 臣 > < 臣 > 三 の Q (* 27/41

Mathematics – two risky assets

Extreme scenario: Perfect positive correlation of risks

Portfolio risk:

$$\sigma_P^2 = (x_1, x_2) \cdot \begin{pmatrix} \sigma_1^2 & \sigma_1 \cdot \sigma_2 \\ \sigma_1 \cdot \sigma_2 & \sigma_2^2 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$\Leftrightarrow \quad \sigma_P^2 = \quad (x_1 \cdot \sigma_1)^2 + 2 \cdot (x_1 \cdot \sigma_1) \cdot (x_2 \cdot \sigma_2) + (x_2 \cdot \sigma_2)^2$$

 $\Rightarrow \sigma_P = x_1 \cdot \sigma_1 + x_2 \cdot \sigma_2$

Mathematics - two risky assets

Extreme scenario: Perfect positive correlation of risks

$$\rho_{i,j} = \frac{\text{COV}(R_i, R_j)}{\sigma_i \cdot \sigma_j} = -1$$

$$\Rightarrow \quad \text{COV}(R_i, R_j) = -\sigma_i \cdot \sigma_j$$

<ロト < 回 > < 巨 > < 巨 > 三 の Q () 29 / 41

Mathematics – two risky assets

Extreme scenario: Perfect negative correlation of risks

Portfolio risk:

$$\sigma_P^2 = (x_1, x_2) \cdot \begin{pmatrix} \sigma_1^2 & -\sigma_1 \cdot \sigma_2 \\ -\sigma_1 \cdot \sigma_2 & \sigma_2^2 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$\Leftrightarrow \quad \sigma_P^2 = \quad (x_1 \cdot \sigma_1)^2 - 2 \cdot (x_1 \cdot \sigma_1) \cdot (x_2 \cdot \sigma_2) + (x_2 \cdot \sigma_2)^2$$

$$\Rightarrow \sigma_P = x_1 \cdot \sigma_1 - x_2 \cdot \sigma_2$$

Mathematics – two risky assets

Extreme scenario: Perfect negative correlation of risks

The perfectly hedged portfolio ('synthetic' risk-free security) fulfils the condition:

$$\sigma_P = 0$$

$$\Rightarrow \quad x_1 \cdot \sigma_1 - x_2 \cdot \sigma_2 = 0$$

with

$$x_1 = 1 - x_2$$

<ロ > < 回 > < 回 > < 三 > < 三 > < 三 > 三 の Q (C 31 / 41)

Numeric example - correlation 0.6

Numeric example - correlation 0.6

Probability	0,25	0,25	0,25	0,25
State of the				
environment	1	2	3	4
Asset 1	10,00%	20,00%	40,00%	80,00%
Asset 2	40,00%	30,00%	30,00%	40,00%

Numeric example – correlation 0.6

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の Q (~ 33 / 41

<ロ > < 回 > < 三 > < 三 > < 三 > 三 の Q (~ 34/41

Numeric example - correlation 1.0

Numeric example - correlation 1.0

Probability	0,25	0.25	0.25	0.25
,				
State of the environment	1	2	3	4
	10.00%	20.00%	40.00%	00.00%
Asset 1	10,00%	20,00%	40,00%	80,00%
Asset 2	20,00%	40,00%	80,00%	160,00%

Numeric example - correlation 1.0

<ロト < 部 > < 注 > < 注 > 注) < ご > < ご > 36 / 41

<ロ > < 合 > < 言 > < 言 > こ = 37 / 41

Numeric example - correlation -1.0

Numeric example - correlation -1.0

Probability	0,25	0,25	0,25	0,25
State of the	1	2	2	
environment	1	2	3	4
Asset 1	10,00%	20,00%	40,00%	80,00%
Acces 2	00.00%	80.00%	60.00%	20.00%
Asset Z	90,00%	80,00%	60,00%	20,00%

<ロト < 回 > < 巨 > < 巨 > < 巨 > 三 の Q (~ 39 / 41

4 ロ ト 4 回 ト 4 三 ト 4 三 ト 三 今 Q (~ 40 / 41)

Lessons

To remember

- 1. Don't separate decisions to invest in assets.
 - Consider correlation of risks.
- 2. Efficient portfolios can comprise assets that are dominated by other assets.
- 3. The risk of a diversified portfolio might be lower than the least risk in the portfolio.