Factor models and linear regression Lecture 8

Dr. Martin Ewers

April 23, 2014

<ロ > < 回 > < 三 > < 三 > < 三 > 三 の Q (~ 1/36

Notation Least squares Reg	ression Example: SIM	Multifactor regression	Quality of regression
Table of contents	5		

- 1. Notation
- 2. Least squares Regression
- 2.1 Definition 'regression'
- 2.2 Noise
- 2.3 Optimization calculus
- 3. Example: SIM
- 4. Multifactor regression
- 4.1 Model input
- 4.2 Optimization calculus
- 5. Quality of regression
- 5.1 Coefficient of determination
- 5.2 Correlation coefficient

Section 1

Notation

<ロ > < 部 > < き > < き > き き き き う い つ く C 3 / 36

Notat	ion Least squares Regression	Example: SIM	Multifactor regression	Quality of regression
No	tation			
	Random variables			
	<i>r</i> ₀	riskless return		
	R _i	return asset <i>i</i>		
	R_M	return indexed po	ortfolio (e.g. DAX	.)
	$ER_i = R_i - r_0$	excess return asse	et i	
	$ER_M = R_M - r_0$	excess return inde	exed portfolio	
	ε_i	idiosyncratic com	ponent of ER _i	

Notat	ion Least squares Regression	Example: SIM	Multifactor regression	Quality of regression
Nc	tation			
	Observed values			
	<i>r</i> _{0,<i>t</i>}	observed risk	less return	
	$R_{i,t}$	observed retu	ırn asset <i>i</i>	
	$R_{M,t}$	observed retu	ırn indexed portfol	io
	$ER_{i,t} = R_{i,t} - r_{0,t}$	observed exc	ess return <i>i</i>	
	$ER_{M,t}=R_{M,t}-r_{0,t}$	observed exce lio	ess return indexed	portfo-
	$\varepsilon_{i,t}$	residuals		

5 / 36

$$\bar{R}_i$$
sample mean $\operatorname{var}(R_i) = \sum_{t=1}^{m} \frac{1}{m} \cdot (R_{i,t} - \bar{R}_i)^2$ sample variance of R_i $\operatorname{var}(F) = \sum_{t=1}^{m} \frac{1}{m} \cdot (F_t - \bar{F})^2$ sample variance of F $\operatorname{cov}(R_i, F) = \sum_{t=1}^{m} \frac{1}{m} \cdot (R_{i,t} - \bar{R}_i) \cdot (F_t - \bar{F})$ sample covariance of F

Notation	Least squares Regression	Example: SIM	Multifactor regression	Quality of regression
Notatio	on			

$$s_i = \sqrt{var(R_i)}$$
 sample standard deviation of R_i
 $s_F = \sqrt{var(F)}$ sample standard deviation of F

Section 2

Least squares Regression

<ロト < 部ト < 言ト < 言ト 三 の Q () 8 / 36

Least squares Regression Definition 'regression'

Definition (Regression)

- Technique used for the modelling and analysis of numerical data
- Exploits the relationship between two or more variables so that we can gain information about one of them through knowing values of the other
- ► Regression can be used for prediction, estimation, hypothesis testing, and modelling causal relationships

Least squares Regression Definition 'regression'

Regression line

 \hat{R}_i is a prognosis of the return for a given value of F:

$$\hat{R}_i = a_i + b_i \cdot F$$

Assumption: The sample distribution of F_t (t = 0, ..., n) corresponds to the probability distribution of the random variable F.

Conclusion: $\hat{R}_i = E[R|F]$ (conditional expected value)

Least squares Regression _{Noise}

Explained versus unexplained sample variation

$$R_{i,t} = a_i + b_i \cdot F_t + \varepsilon_{i,t}$$

$$\begin{split} \hat{R}_{i,t} &- \bar{R}_i &: \text{ explained sample variation} \\ R_{i,t} &- \hat{R}_i = \varepsilon_{i,t} : \text{ unexplained sample variation (colloquial: 'noise')} \\ R_{i,t} &- \bar{R}_i &: \text{ total sample variation} \end{split}$$

Optimization calculus

Least squares regression means: The sum of the squared residuals $\varepsilon_{i,t}$ gets minimised.

$$SSR_i = \sum_{t=1}^m (\varepsilon_{i,t})^2 = \sum_{i=1}^m (R_{i,t} - \hat{R}_{i,t})^2 \rightarrow \min_{a_i,b_i}$$

with

m number of observations in scatter plot

<ロ > < 部 > < 注 > < 注 > こ の < で 12 / 36

Least squares regression Optimization calculus

Conditions for a minimum of SSR_i

$$\begin{pmatrix} \frac{\partial SSR_i}{\partial a_i} &= 0 \\ \frac{\partial SSR_i}{\partial b_i} &= 0$$

$$\Rightarrow \begin{cases} a_i = \bar{R}_i - b_i \cdot \bar{F} \\ b_i = \frac{\operatorname{cov}(R_i, F)}{\operatorname{var}(F)} \end{cases}$$

Section 3

Example: SIM

<ロ > < 部 > < 注 > < 注 > < 注 > 注 の Q (~ 14/36

SIM – Basic assumption

$$ER_i = a_i + b_i \cdot ER_M + \varepsilon_i$$

with

 $ER_i = R_i - r_0$ random excess return on asset *i* $ER_M = R_M - r_0$ random excess return on indexed portfolio

Example: SIM

Definition (Security Characteristic Line)

The Security Characteristic Line is regression line

$$\widehat{ER}_i = a_i + b_i \cdot ER_M$$

CAPM: Security Market Line

Single Index Model: Security Characteristic Line

<ロ > < 部 > < 注 > < 注 > 注 の Q (0 16/36

Example: SIM

Scatter plot $(ER_{M,t}, ER_{i,t})$

 $ER_{i,t}$ versus residuals $\varepsilon_{i,t}$

The residuals $\varepsilon_{i,t}$ are not determined by $ER_{i,t}$

Example: SIM

Interpretation of b_i

General:

$$\frac{\partial \widehat{ER}_i}{\partial ER_M} = b_i$$

Example: $b_{DT} = 0.7127$, with DT denoting 'Deutsche Telekom'.

- DT is less volatile than the DAX.
- ► For every 1% change in the DAX, we expect the return on DT to change by 0.7127%.

Interpretation of a_i in case of a SIM

General:

$$ER_M = 0 \Rightarrow \widehat{ER}_i(0) = a_i$$

Example: $a_{DT} = -0.0092$.

- $ER_M = 0$ means the DAX does not change, which is a random event.
- If $ER_M = 0$, DT's return is expected to be -0.0092.
- Conclusion: Other factors than the DAX have a negative impact on DT's return.

Example: SIM

Estimating b_i

Recall that for random variables R_i and $ER_i = R_i - r_0$:

$$b_i = \frac{\text{COV}(R_i, R_M)}{\text{VAR}(R_M)} = \frac{\text{COV}(ER_i, ER_M)}{\text{VAR}(ER_M)}$$

Background: The riskless return r_0 is by definition no random variable.

Example: SIM

Estimating *b_i*

b_i might be estimated either on the basis of

- observed raw returns $R_{i,t}$ and $R_{M,t}$ or
- observed excess returns $ER_{i,t}$ and $ER_{M,t}$

These approaches will yield different results:

- ► Historically, the riskless rate takes different values.
- Correspondingly, $r_{0,t}$ will take different values in the sample.

Section 4

Multifactor regression

Method of least squares Model input

n observations of *m* factors as model input

 $(F_{1,t}, \ldots, F_{m,t}, R_{i,t})$ is a pair of observed values. Each of the following *n* equations corresponds to an observation $(t = 1, \ldots, n)$:

<ロ> < 部 > < 語 > < 注 > < 注 > 注 の Q (* 25 / 36)

Method of least squares Model input

n observations as model input

$$\vec{\varepsilon_i} = \vec{R}_i + M \cdot \vec{k}_i$$

specific to asset *i*

common to all assets in analysed portfolio

$$\vec{\varepsilon_{i}} = \begin{pmatrix} \varepsilon_{i,1} \\ \varepsilon_{i,2} \\ \vdots \\ \varepsilon_{i,n} \end{pmatrix}; \vec{R}_{i} = \begin{pmatrix} R_{i,1} \\ R_{i,2} \\ \vdots \\ R_{i,n} \end{pmatrix}; \vec{k}_{i} = \begin{pmatrix} a_{i,0} \\ b_{i,1} \\ b_{i,2} \\ \vdots \\ b_{i,m} \end{pmatrix} M = \begin{pmatrix} 1 & F_{1,1} & \dots & F_{m,1} \\ 1 & F_{1,2} & \dots & F_{m,2} \\ \vdots & \vdots \\ 1 & F_{1,n} & \dots & F_{m,n} \end{pmatrix}$$

- ◆□ > ◆□ > ◆臣 > ◆臣 > ―臣 りへぐ
 - 26 / 36

Method of least squares Optimization calculus

Least squares regression means: The sum of the squared residuals $\varepsilon_{i,t}$ gets minimised.

$$SSR_i = f(ec{k}_i)
ightarrow \min_{a_{i,0}, b_{i,1}, \dots, b_{i,i}}$$

with

$$f(\vec{k}_i) = \left(\vec{R}_i + M \cdot \vec{k}_i\right)^T \cdot \left(\vec{R}_i + M \cdot \vec{k}_i\right) \\ = \vec{k}_i^T \cdot M^T \cdot M \cdot \vec{k}_i - 2 \cdot \vec{k}_i^T \cdot M^T \cdot \vec{R}_i + \vec{R}_i^T \cdot \vec{R}_i$$

 M^T is the transpose matrix of matrix M.

<ロト < 回 ト < 回 ト < 三 ト < 三 ト 三 三</p>

28 / 36

Method of least squares Optimization calculus

The gradient of f is the vector of the derivatives of f.

$$7f := \begin{pmatrix} \frac{\partial f}{\partial a_{i,0}} \\ \frac{\partial f}{\partial b_{i,1}} \\ \vdots \\ \frac{\partial f}{\partial b_{i,m}} \end{pmatrix}$$

 ∇f is read as 'nabla f'.

3

29 / 36

Method of least squares Optimization calculus

Gradient of f

$$\nabla f = M^T \cdot M \cdot \vec{k}_i + \vec{k}_i^T \cdot M^T \cdot M - 2 \cdot M^T \cdot \vec{R}_i$$
$$= 2 \cdot M^T \cdot M \cdot \vec{k}_i - 2 \cdot M^T \cdot \vec{R}_i$$

Method of least squares Optimization calculus

The vector \vec{k}_i that minimizes the sum of square deviations fulfils the condition:

$$\nabla f = 0$$

$$\Leftrightarrow M_i^T \cdot M_i \cdot \vec{k_i} = M_i^T \cdot \vec{R_i}$$

$$\Leftrightarrow \vec{k_i} = (M_i^T \cdot M_i)^{-1} \cdot M_i^T \cdot \vec{R_i}$$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへ() 30 / 36

Section 5

Quality of regression

Quality of regression Coefficient of determination

Definition (coefficient of determination)

$$RD_i^2 = \frac{\sum_{t=1}^m \frac{1}{m} (\hat{R}_{i,t} - \bar{R}_i)^2}{\sum_{t=1}^m \frac{1}{m} (R_{i,t} - \bar{R}_i)^2}$$

- ► In statistics, the standard notion of the coefficient of determination is R² ('R-squared').
- ► For this lecture the notation RD²_i is chosen to avoid confusion with asset returns R_i.

Example: SIM

Multifactor regression

Quality of regression Coefficient of determination

$$\sum_{t=1}^{m} \frac{1}{m} \cdot \varepsilon_{i,t}^{2} = \sum_{i=1}^{m} \frac{1}{m} \cdot (R_{i,t} - \hat{R}_{i,t})^{2} \text{ part of sample variance of } R_{i,t} \text{ not 'explained' by regression line}$$
$$+ \sum_{t=1}^{m} \frac{1}{m} \cdot (\hat{R}_{i,t} - \bar{R}_{i})^{2} \text{ part of sample variance of } R_{i,t} \text{ 'explained' by regression line}$$
$$= \operatorname{var}(R_{i}) = \sum_{t=1}^{m} \frac{1}{m} \cdot (R_{i,t} - \bar{R}_{i})^{2} \text{ total sample variance of } R_{i,t}$$

Quality of regression Coefficient of determination

Interpretation

 $RD_i^2 = \frac{\text{sample variance of } R_{i,t} \text{ 'explained' by regression line}}{\text{total sample variance of } R_{i,t}}$

- Correspondingly: $RD_i^2 \in [0, 1]$
- ► The higher *RD*²_{*i*}, the better the predictive nature of the linear regression model.
- ► RD_i² = 1 implies that the asset's idiosyncratic risk is expected to be zero.

Quality of regressio Correlation coefficient

Definition (correlation coefficient)

$$\rho_{i,F} = \frac{\operatorname{cov}(R_i, F)}{\mathsf{s}_i \cdot \mathsf{s}_F}$$

イロン イロン イヨン イヨン 三日

35 / 36

with

- s_F sample standard deviation of F
- s_i sample standard deviation of return on asset i

36 / 36

Quality of regression Correlation

Interpretation

$$\mathsf{Img}(\rho_{i,F}) = [-1;1]$$

- $\rho_{i,F} = 0$: No correlation.
- $\rho_{i,F} = 1$: Perfect positive correlation.
- $\rho_{i,F} = -1$: Perfect negative correlation.

In case of a simple linear regression:

$$RD_i = (\rho_{i,F})^2$$